Computation-in-Memoryにおける不揮発性メモリ 書き込み誤差による推論精度劣化の補償

東京大学大学院 工学系研究科 電気系工学専攻 竹内研究室 修士2年 吉清 秦生

目次

- 1. 背景: Computation-in-Memoryとは
- 2. 課題: 不揮発性メモリの書き込みばらつき
- 3. 解決方針と先行研究: 再学習によるばらつきの補償
- 4. 提案手法: 層を限定した再学習
- 5. 実験:各層のエラー耐性と回復能力、提案手法による精度回復
- 6. 結論

背景: Computation-in-Memory(CiM)とは

[1] Xi, Y., Gao, B., Tang, J., Chen, A., Chang, M. F., Hu, X. S., Spiegel, J. Van Der, Qian, H., & Wu, H. (2021). In-memory Learning with Analog Resistive Switching Memory: A Review and Perspective. Proceedings of the IEEE,109(1),14–42.

竹内研究室 吉清 秦生

背景: ニューラルネットワーク

- 画像や音声などの情報を入力し、層構造の演算を繰り返し、出力を出す機構
- 各層には重みというパラメータがあり、基本的に入力 データと重みの積和演算を行うことで出力を計算する
- 重みの値は、大量のデータを入力して学習する。
- CiMでは、学習済み重みを不揮発性メモリに記憶する。
- エッジデバイス(IoTデバイス,スマホ,車 など)上での使用
- エッジデバイスは計算能力、電力が限られている

→CiMデバイスを使用することで、

推論演算を高速化、低消費電力化

データ

layer

layer

layer

顏認識

重み×入力データ

不揮発性メモリ

音声認識

課題: 不揮発性メモリの書き込みばらつきエラー

物性として値を保持するため、完全には制御 F
 できない

さらに

- 不揮発性メモリは新興の素子であり制御精度が 低い
- アナログ値として値を保存するため、補正も難しい
- 結果として、値の書き込み時に、保存した値が ばらついてしまう

解決方針と先行研究: 再学習によるばらつきの補償

ばらつきによる推論精度の低下の対策 (先行研究)

書き込まれたモデルの後段の層を部分的に再学習し、ばらつきに対応する

^[1] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and H. Qian, "Fully hardware-implemented memristor convolutional neural network," Nature, vol.577, no. 7792, pp.641–646, 2020.

解決方針と先行研究: 再学習によるばらつきの補償

ばらつきによる推論精度の低下の対策 (先行研究)

提案手法:従来手法との比較

アイデア: 再書き込みする重みを減らして、再書き込み時の精度低下を抑制

- 従来手法: モデル後段の数層を再学習
- ・提案手法:モデル後段の数層の中で、エラー耐性が高い層のみを再学習
 →再書き込み時のばらつきによる精度低下が減少

実験:Resnet-32の構造

どの層を再学習するか → 実験的に求める

モデル: Resnet-32

- 畳み込み層(convolution)を持つ
- shortcut connectionを持つ
- shortcut connectionの間の畳み込み層をC1, C2と呼ぶ

データセット: CIFAR-10

 ・ 車, 鳥など10種の画像を分類するベンチマーク データセット

竹内研究室 吉清 秦生

実験:各層のエラー耐性

実験:1層のみにエラーを注入する実験を実施(シミュレーション)

結果:

- w/o shortcut (緑,青): 一貫した特徴は見られない
 - C1より、C2の方がエラー耐性が高い
 - C1,C2のエラー耐性は、shortcut connectionに起因している

実験:提案手法による精度回復

提案手法: C2層を選択的に再学習

実験: 全層にエラーを注入し、後段の[全層, C1層, C2層]を数層再学習

- ・ 再学習直後の精度は従来手法(灰)の方が高い
- 再書き込み後の推論精度は提案手法(青)の方が高い
- 比較のための、C1のみの再学習(橙)は、再書き込みによる低下が大きい
 2022/12/03
 竹内研究室 吉清 素生

by rewriting

実験:提案手法の実験結果

	Conv.	Prop.	Conv.	Prop.
エラーサイズ [n.s.]	0.03		0.06	
エラー注入後の推論精度 [%]	79.8		21.9	
再書き込み後の推論精度 [%]	88.7 🗖	90.4	57.5 🗖	80.9
誤差逆伝播する層数	14	18	9	20
再書き込みする重みの個数	380k ⊏	> 185k	297k ⊏	> 194k

- ・ 再書き込みする重みの個数を削減 (380k→185k, 297k→194k)
 - ・ 再書き込み後の推論精度を向上 (88.7→90.4, 57.5→80.9)

• 書き込みばらつきの補正後、再書き込みの際に再び書き込みばらつきが発生

エラー耐性の高い層のみを再学習することで、再書き込み時の精度低下を抑制

• shortcut connectionに起因するエラー耐性の差を利用

